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Polymer stretching in random smooth flows is investigated within the framework of
the FENE dumbbell model. The advecting flow is Gaussian and short-correlated in
time. The stationary probability density function of polymer extension is derived
exactly. The characteristic time needed for the system to attain the stationary regime
is computed as a function of the Weissenberg number and the maximum length of
polymers. The transient relaxation to the stationary regime is predicted to be excep-
tionally slow in the proximity of the coil–stretch transition.

1. Introduction
The ability of polymers to considerably change the large-scale statistics of the

advecting flow has important practical applications, drag reduction being one of the
most relevant ones (see Gyr & Bewersdorff 1995). Polymers affect the dynamics of
the advecting velocity field only if they are highly elongated. Understanding how a
single polymer chain is stretched by a random flow is thus the first issue to address
in the study of hydrodynamical properties of polymer solutions.

At equilibrium, the radial shape of coiled polymers is spherical due to their entropy.
When placed in a non-homogeneous flow, polymers are deformed and stretched by
the gradients of the velocity. The product of the longest relaxation time of polymers
and the characteristic rate of deformation is called the Weissenberg number Wi. For
small Wi the entropic force prevails and polymers are in the coiled state. When Wi
exceeds a critical value the molecules become highly elongated and their extension
increases sharply. This phenomenon is called coil–stretch transition and the critical
Weissenberg number is known to be approximately one.

We investigate the statistics of polymer extension in the FENE (finite extensible
nonlinear elastic) dumbbell model (see e.g. Bird et al. 1977, for a review). A polymer
is described as two beads joined by an elastic spring. The elastic force diverges as the
elongation of polymers attains its maximum value, Rm, and this gives a large-extension
cutoff. Consequently the stationary regime exists however strong the velocity gradients
are. Since attention is directed only to the dynamics of a single molecule, the feedback
on the advecting flow is disregarded. To allow analytical progress, the random flow is
chosen to have Batchelor–Kraichnan statistics. This means that the considered flow is
Gaussian, white in time and linear in space. The Batchelor–Kraichnan model is a fully-
solvable model for passive turbulent transport which can provide useful connections
between theory and real behaviours (see Falkovich, Gawȩdzki & Vergassola 2001,
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for a review on the applications to scalar and magnetic fields). The results should be
intended as a qualitative description of real polymer dynamics. We derive the complete
form of the stationary probability density function (p.d.f.) of polymer extension and
describe how the statistics of polymer stretching changes with increasing velocity
gradients. Concerning the statistics at finite times, we compute the typical time needed
for the system to reach the steady state and predict how it depends on the maximum
length of polymers and the stretching by the flow. Our analysis shows that the coil–
stretch transition of polymers is characterized by an anomalous dynamics in time.

The coil–stretch transition was predicted in 1974 for shear and hyperbolic flows
(De Gennes 1974) and has been widely studied experimentally for such flows (Perkins,
Smith & Chu 1997; Smith, Babcock & Chu 1999; Hur et al. 2002; Babcock et al. 2003).
In contrast, the experimental study of polymer dynamics in random flows is a very
recent achievement. This is due to the difficulty in generating a flow that is random
at scales comparable with the size of polymers (about 100 µm). This difficulty can be
overcome thanks to the elastic turbulence discovered by Groisman & Steinberg (2000);
the flow of a highly elastic polymer solution at low Reynolds numbers but large Wi
has all the main properties of fully developed turbulence. Therefore, in solutions of
sufficiently elastic polymers it is possible to excite turbulent motion in exceedingly
small volumes. Exploiting elastic turbulence in polymer solutions, Gerashchenko,
Chevallard & Steinberg (2005) thus investigated the stretching and the deformation
of a single DNA molecule in a three-dimensional random flow.

Theoretical studies concerning the coil–stretch transition in random flows have focu-
sed mainly on the Hookean dumbbell model (Chertkov 2000; Balkovsky, Fouxon &
Lebedev 2000; Celani, Musacchio & Vincenzi 2005a). This model is suitable only for
the coiled state (Wi < 1) since the linear force in principle allows infinite extensions and
for large Wi polymers can become more and more elongated under the action of
velocity gradients. For Wi � 1 a stationary p.d.f. of the extension no longer exists and
this behaviour was conjectured to coincide with the coil–stretch transition. To over-
come this oversimplification, the maximum length of polymers must be taken into
account. One possibility is to replace the Hookean force by a nonlinear elastic force.
Chertkov (2000) obtained the large-value tail of the stationary p.d.f. of the extension
for a general anharmonic force; this approximate analysis was subsequently applied
by Thiffeault (2003) to the FENE model. Here we exactly derive the complete statistics
of polymer stretching within the context of the FENE dumbbell model at general Wi.

Concerning the statistics at finite times, preliminary results were obtained for the
Hookean model by Celani et al. (2005a). There, the relaxation time to the stationary
regime could be defined only in the coiled state. Celani et al. (2005a) thus derived
the behaviour of the relaxation time for very small Wi and observed a divergence
for Wi = 1; this suggested a critical behaviour close to the coil–stretch transition. We
present the first prediction of the complete dependence of the transient relaxation
time on Wi and Rm with the more realistic FENE model.

The rest of this paper is organized as follows. In § 2 we introduce the model and
present the main results. The stationary p.d.f. of the elongation and the transient
relaxation time are computed in § 3 and in § 4 respectively. In § 5 we discuss the
relevance of our results for experiments and numerical simulations.

2. Coil–stretch transition
In elastic dumbbell models a polymer is described as two beads connected by a

spring. The beads represent the ends of the molecule and their separation is a measure
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of the extension. The beads experience: (a) a hydrodynamic drag force modelled by
the Stokes law; (b) a Brownian force due to thermal fluctuations of the fluid; (c) an
elastic force due to the spring connecting one bead to the other. We consider both
two-dimensional and three-dimensional flows in the same way, the dimension of the
flow being denoted by d . Since in physical applications the elongation of polymers is
always smaller than the viscous scale of the flow, the dumbbell is assumed to move
in a linear velocity field v(r, t) = v0(t) + r · ∇v(t). Inertial effects and hydrodynamic
interactions between the beads are neglected. Consequently, the separation vector
between the beads, R, evolves according to the stochastic differential equation (see
Bird et al. 1977)

dR = (R · ∇v) dt − F(R)

τ
dt +

√
2R2

0

τ
dW , (2.1)

where R0 is the equilibrium length of the polymer, τ is its relaxation time in the absence
of flow, and W is a d-dimensional Brownian motion which accounts for thermal
noise. In the FENE dumbbell model, the elastic force F(R) takes the form F(R) =
R/(1−R2/R2

m), where Rm denotes the maximum extension of the molecule. In physical
applications the ratio Rm/R0 usually lies between 10 and 100 (Bird et al. 1977). The
length of the vector R is a measure of the extension of the polymer.

Within the Kraichnan model v(x, t) is a statistically homogeneous Gaussian field
with zero mean and second-order correlation (Kraichnan 1968):

〈vi(x, t)vj (x + r, t ′)〉 = Dij (r)δ(t − t ′).

In the so-called Batchelor regime the flow is assumed to be smooth in space. If we
further impose incompressibility and statistical invariance with respect to reflections
and rotations, the tensor Dij (r) must take the form (Monin & Yaglom 1975)

Dij (r) = D0δij − D1[(d + 1)δij r
2 − 2rirj ],

where D0 represents the eddy diffusivity of the flow and D1 determines the intensity
of turbulent fluctuations. In random flows the Weissenberg number can be defined as
Wi = λτ , where λ is the maximum Lyapunov exponent of the flow, that is the average
logarithmic growth rate of nearby fluid particle separations. The maximum Lyapunov
exponent of the Batchelor–Kraichnan flow has asymptotically a Gaussian p.d.f. with
mean value λ= D1d(d − 1) and variance ∆ =2λ/d (Kraichnan 1974).

2.1. Stationary regime

The statistics of polymer elongation is described by the p.d.f. of the norm of R
averaged over velocity realizations†: P(R, t) =

∫
〈P (R, t)〉Rd − 1 dΩ , where dΩ denotes

integration over angular variables. When the flow v has Batchelor–Kraichnan statistics
P(R, t) obeys a one-dimensional Fokker–Planck equation with non-trivial drift and
diffusion coefficients (see § 3). Under reflecting boundary conditions (the probability
does not flow outside the domain of definition) the system reaches a steady state for
all Wi‡. The stationary p.d.f. of the elongation, Pst(R) = limt→∞ P(R, t), has the form

† Because of the statistical homogeneity of v, the average p.d.f. of the elongation does not depend
on the point of application of the vector R.

‡ This should be contrasted with the Hookean model where the stationary regime does not exist
for Wi � 1 (see Chertkov 2000; Balkovsky et al. 2000; Thiffeault 2003; Celani et al. 2005a).
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Figure 1. Stationary p.d.f. of polymer elongation for the three-dimensional FENE model
at different Weissenberg numbers Wi (Rm/R0 = 50).
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Figure 2. (a) Most probable rescaled elongation R�/Rm and average rescaled extension µ/Rm

as functions of the Weissenberg number Wi (d = 3, Rm = 50, R0 = 1). (b) First derivative of
R�/Rm with respect to Wi.

(see § 3)

Pst(R) = N Rd−1

(
1 +

Wi

d

R2

R2
0

)−h(
1 − R2

R2
m

)h

, 0 � R � Rm, (2.2)

where h = [2(R2
0/R

2
m + Wi/d)]−1 and N is the normalization coefficient (see (3.5)

below). The stationary p.d.f. is shown in figure 1 for different Wi. For small elongations
compared to the equilibrium length, Pst(R) scales as Rd−1; this result holds for a
general elastic force since the left tail of Pst comes from the events where the elastic
force dominates and equation (2.1) reduces to a d-dimensional Langevin equation
(for physically meaningful elastic interactions F(R) should scale as R for R → 0).
For intermediate extensions, R0 � R � Rm, the stationary p.d.f. is proportional to the
power law Rd−1−2h in accordance with the prediction of Balkovsky et al. (2000). For
large elongations Pst(R) scales as (R2

m − R2)h and vanishes for R =Rm. In practical
applications, R0/Rm � 1, the exponent h is approximatively d/(2Wi), as predicted by
Thiffeault (2003). Obviously, when Rm → ∞ and Wi < 1, Pst(R) tends to the stationary
solution of the Hookean model (see Celani et al. 2005a).

The maximum of the p.d.f., R�, determines the fraction of polymers which are highly
stretched. The graph of R� as a function of Wi is shown in figure 2(a). When Wi is
smaller than one, R� is of the order of R0 and most of polymers have the coiled equilib-
rium configuration. With increasing Wi the most probable elongation R� grows slowly
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Figure 3. (a) Normalized root mean square σ/µ as a function of the Weissenberg number
Wi (d = 3, Rm = 50, R0 = 1). (b) Skewness y vs Wi for the same values of the parameters.

until Wi exceeds d/(d − 1). Then, a sharp transition occurs to a strongly elongated
state. This can be appreciated from the behaviour of the first-order derivative of R� as
a function of Wi (figure 2b). As Wi becomes very large, R� approaches Rm. The same
analysis holds for the average extension µ, apart from the fact that it starts increasing
for a smaller Wi and its limiting value is 3

4
Rm (see figure 2). It is worth noticing that the

coil–stretch transition becomes sharper and sharper with increasing Rm (not plotted).
The normalized r.m.s. value of the extension, σ/µ, σ 2 =

∫
(R − µ)2Pst(R) dR, is

represented in figure 3(a). It increases at low Wi until it reaches a maximum value;
then σ is compensated by the sharp increase in µ and at large Wi the rescaled r.m.s.
eventually relaxes to the constant value 1/

√
15.

The skewness y = [
∫

(R − µ)3Pst(R) dR]/σ 3 is positive for small Wi and becomes
negative at large Wi (figure 3b), corresponding to the qualitative behaviour of the sta-
tionary p.d.f. (figure 1). The maximum of skewness in the neighbourhood of the coil–
stretch transition can be easily understood as follows. At low Wi the p.d.f. is peaked at
R0 and the skewness is positive. With increasing Wi the right tail starts increasing, but
µ is still of the order of R0: the skewness, therefore, increases and achieves is maximum
value. Beyond the coil–stretch transition µ starts moving towards the maximum
extension and the skewness decreases until it becomes negative at large Wi, that is
when the p.d.f. has a long left tail. The limiting value of y for Wi → ∞ is − 2

3

√
5/3.

2.2. Relaxation to the stationary regime

We now turn to the time dependence of the p.d.f. of the elongation. Starting from an
initial condition peaked at R0, the system relaxes to the stationary regime described
by (2.2). The time needed to reach the stationary regime, T , is the solution of a trans-
cendental equation which involves continued fractions (see § 4).

For small Weissenberg numbers, 0 � Wi � d/(d + 4), the transient relaxation time
T behaves according to the prediction of the linear model (Celani et al. 2005a):

T/τ = 1
2
[1 − Wi (d + 2)/d]−1 (2.3)

independently of Rm (see inset in figure 4).
In the proximity of the coil–stretch transition T displays a maximum as a function

of Wi. The relaxation is exceptionally slow in this range of Wi because the stationary
regime results from the competition between the coiled state and the highly stretched
state. The position and the value of the maximum relaxation time Tmax depend on
the cutoff Rm (figure 4b). As the maximum allowed extension of polymers increases,
Tmax is closer and closer to Wi = 1 and grows; at large Rm the FENE model should
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Figure 4. (a) Rescaled time of relaxation to the stationary regime, T/τ , as a function of
the Weissenberg number Wi for three different values of Rm/R0 (d = 3). The inset shows
the linear-model approximation given by equation (2.3) (dashed line) for Rm/R0 = 50: the
agreement is good up to d/(d + 4) 	 0.4. (b) Dependence of the maximum rescaled relaxation
time Tmax/τ on the maximum relative extension of polymers Rm/R0.

indeed match the Hookean model, where T diverges as Wi tends to one (Celani et al.
2005a).

For very large Weissenberg numbers the stretching time is small compared to τ

and the molecules are expected to rapidly reach the highly stretched configuration.
Hence, T vanishes as Wi tends to infinity. A numerical fit shows that T scales as Wi−1

at large Wi.
In the next sections we explicitly derive (2.2) and the equation for T .

3. Fokker–Planck equation
For a fixed realization of the velocity field the p.d.f. of the end-to-end vector, P (R, t),

satisfies the Fokker–Planck equation associated with (2.1) (see e.g. Risken 1989):

∂tP + divR

[(
R · ∇v − F(R)

τ

)
P

]
=

R2
0

τ
∇2

RP. (3.1)

To obtain an equation for P(R, t), we average the above equation over the velocity
realizations and integrate the result over angular variables. The terms of the type
〈viP 〉 in general do not lead to a closed form for the mean p.d.f. and a closed
equation cannot be deduced from (3.1). The Gaussianity and the δ-correlation in
time of the Batchelor–Kraichnan model provide an exact closure. Exploiting the
Novikov–Furutsu formula (see e.g. Klyatskin, Woyczynski & Gurarie 1996), we obtain:
〈(∇ivj )P 〉 = −Cijk�∂R�

[Rk〈P 〉] with Cijk� = D1[(d +1)δikδj� − δij δk� − δi�δjk]. We can
thus derive from (3.1) a one-dimensional Fokker–Planck equation for P(R, t):

∂sP(R, s) = −∂R[A(R)P(R, s)] + ∂2
R[B(R)P(R, s)], (3.2)

where the time has been rescaled with τ , s = t/τ , and the drift and diffusion coefficients
have the form

A(R) =
(d + 1)

d
WiR − F (R) + (d − 1)

R2
0

R
and B(R) =

Wi

d
R2 + R2

0 . (3.3)

The coefficients A and B are time independent due to the stationarity of the advecting
flow. If R0 is set to zero, then equation (3.2) reduces to the approximate equation for
the large-value tail of the p.d.f. derived by Chertkov (2000).
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To solve (3.2) we impose reflecting boundary conditions, that is the probability cur-
rent associated with the solution, J (R, s) = A(R)P(R, s) − ∂R [B(R)P(R, s)], vanishes
in R = 0 and R = Rm for all s � 0. This means that there is no flow of probability
through the boundaries of the domain. Under these conditions the stationary p.d.f. of
the elongation takes the form (Risken 1989)

Pst(R) =
C

B(R)
exp

[ ∫ R

R1

A(x)/B(x) dx

]
(3.4)

where the constant C and the lower integration limit R1 are fixed by the normalization
condition. The above formula holds for a general elastic force of the form F(R) =
f (R)R. Placing the force of the FENE model into (3.4), we thus obtain (2.2) with

N =
2Γ (d/2 + h + 1)

Rd
mΓ (d/2)Γ (h + 1)2F1(d/2, h; d/2 + h + 1; −Wi R2

m/dR2
0)

. (3.5)

The function 2F1 in the normalization coefficient denotes the hypergeometric function.

4. Relaxation time
The time-dependent solution of equation (3.2) can be obtained by separation of

variables (Risken 1989). In other words, P(R, s) can be sought in the form

P(R, s) = Pst(R) +

∞∑
k=1

ck e−µkspk(R) (4.1)

where the coefficients ck are fixed by the initial condition P(R, 0), and µk , pk(R) are res-
pectively the eigenvalues and the eigenfunctions of the ordinary differential equation

d2

dR2
[B(R)pk(R)] − d

dR
[A(R)pk(R)] + µkpk(R) = 0. (4.2)

The above equation should be solved with reflecting boundary conditions: Jk(0) =
limR→Rm

Jk(R) = 0, Jk being the probability current associated with the eigenfunction
pk . It can be shown that the eigenvalues µk are real and non-negative, Pst(R) belong-
ing to the eigenvalue µ0 = 0 (Risken 1989). As we will see, the eigenvalues form a
countable set and may be arranged in ascending order: 0 <µ1 < µ2 < . . . . The recipro-
cal of µ1, therefore, is the time of relaxation to the stationary regime rescaled by τ .

Equation (4.2) is a second-order linear differential equation with four regular
singularities in the complex plane. By a change of dependent and independent
variables z = (R/Rm)2, pk(z) = z(d−1)/2 (1 − z)hwk(z), this equation can be transformed
into a standard Heun equation for the function wk(z) (see Ronveaux 1995, for a
review):

d2wk

dz2
+

(
γ

z
+

δ

z − 1
+

ε

z − a

)
dwk

dz
+

αβz − q

z(z − 1)(z − a)
wk = 0, (4.3)

where

a = − d

Wi

R2
0

R2
m

, q =
d

2

(
h +

µk

2Wi

)
,

α = h +
d

4
− 1

4

√
d

(
d − 4µk

Wi

)
, β = h +

d

4
+

1

4

√
d

(
d − 4µk

Wi

)
,

γ = d/2, δ = h, ε = 1 + h,
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with h = [2(R2
0/R

2
m + Wi/d)]−1. Reflecting boundary conditions for pk map into the

following limiting conditions for wk:

lim
z→0

zγ −1wk(z) = 0 and lim
z→1

(1 − z)δ−1wk(z) = 0. (4.4)

The Heun equation is the general Fuchsian equation with four singularities. In the
standard form (4.3) the singular points are 0, 1, a, ∞. Let z0 be a generic singularity of
(4.3). From the theory of Fuchsian equations, the local behaviour of wk(z) near z0 is
specified by the characteristic exponents ρ1, ρ2 associated with z0 (see e.g. Whittaker
& Watson 1996). If ρ1 − ρ2 is not integer, in a neighbourhood of z0 which excludes
the nearest other singularity, wk(z) can be written in the form b1(z − z0)

ρ1ϕ(z − z0) +
b2(z − z0)

ρ2ψ(z − z0), where b1, b2 are constant and ϕ, ψ are analytic functions such
that ϕ(z0) �= 0, ψ(z0) �= 0. If ρ1 − ρ2 is integer and ρ1 � ρ2, the function ψ can be no
longer analytic in z0 and involve the function log(z − z0).

The singularity z = 0 has characteristic exponents 0 and 1 − γ ; the singularity z = 1
has characteristic exponents 0 and 1 − δ. In physical applications we can exclude the
situation where δ is integer. On the contrary, 1 − γ is zero when d = 2.

Consider first the case d = 3, where there are not logarithmic singularities in z =0.
To fulfil conditions (4.4), wk must be simultaneously a local solution about z = 0 and
z = 1, in both cases belonging to the exponent 0. Such a solution is called a Heun
function of class I relative to the points 0 and 1, and exists only for a countable set
of values of q and hence of µk (see Ronveaux 1995). The condition for the aforemen-
tioned Heun function to exist leads to a transcendental equation for the eigenvalues
µk (Erdélyi 1944):

L0 − M0K1

L1 − M1K2

L2 − . . .

= 0, (4.5)

where

Ki =
(i + α − 1)(i + β − 1)(i + γ − 1)(i + ω − 1)

(2i + ω − 1)(2i + ω − 2)
,

Li = q + ai(i + ω) − ε i(i + ω)(γ − δ) + [i(i + ω) + αβ][2i(i + ω) + γ (ω − 1)]

(2i + ω − 1)(2i + ω + 1)
,

Mi =
(i + 1)(i + ω − α + 1)(i + ω − β + 1)(i + δ)

(2i + ω + 1)(2i + ω + 2)
,

with ω = γ + δ − 1. The rescaled relaxation time T/τ is then the reciprocal of the lowest
non-zero solution of (4.5). In the case d = 2 the conclusions are unchanged since the
solution involving a logarithm in the neighbourhood of z =0 should be discarded.

We solved (4.5) numerically: the continued fraction was computed by the modified
Lentz method and the first non-zero solution was evaluated by the root false position
method (see e.g. Press et al. 1993).

5. Summary and discussion
The goal of the paper was to investigate polymer stretching in a turbulent flow

within the context of a fully solvable model. The statistical features of the Batchelor–
Kraichnan flow allow us to derive the complete form of the stationary p.d.f. of polymer
elongation for a general elastic force. When specializing to finitely extensible polymers
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we recover the main properties of polymer dynamics in real turbulent flows and com-
pute the time of relaxation to the stationary regime.

It should be noted that the velocity field we consider is statistically isotropic.
Together with the δ-correlation in time, this is a key assumption in order to derive a
fully analytical solution of the problem. In the experimental setup of Gerashchenko
et al. (2004) the elastic turbulent flow is superimposed on a mean shear flow. The
long-time statistics of polymer extension in the presence of a mean shear has been
recently considered by Chertkov et al. (2005); Celani, Puliafito & Turitsyn (2005b);
Puliafito & Turitsyn (2005); Turitsyn (2005).

The main result of our study is the behaviour of the time of relaxation to the steady
state as a function of Wi. At low Wi the transient relaxation time is an increasing
function of Wi, it is maximum close to the coil–stretch transition, and eventually
tends to zero with increasing Wi. Knowing the dependence of the transient time on
Wi is relevant both for numerical simulations and experiments. For example, in the
former case, the time required for uncorrelated polymer chains that are suddenly
exposed to the same flow to correlate is (implicitly) related to the sharpness of stress
gradients one can expect in the flow. Hence, the prediction of the transient time in our
study is useful to estimate the required grid spacing to fully resolve those gradients
(L. Collins 2005, private communication). In the latter case, the fact that the tran-
sient relaxation time is especially long just below the coil–stretch transition implies
that within such range of Wi experimental measures are more sensitive to statistical
fluctuations.

Experiments concerning the transient relaxation to the stationary regime can investi-
gate the time dependence of the conditional p.d.f. P(R, t |R0, 0), which corresponds to
the initial condition peaked at the equilibrium size: P(R, 0|R0, 0) = δ(R − R0). Such
an initial condition can be fixed experimentally as follows (A. Celani 2005, private
communication). The p.d.f. of the extension is constructed by following the motion
of different polymer molecules and collecting R(t) for each molecule: one should
then start counting time only when the length of the corresponding polymer is
approximatively R0. This is equivalent to selecting the initial state where all molecules
have the equilibrium extension, R(0) = R0.

The transient relaxation time can be measured directly from the time behaviour of
the conditional moments of the extension: Rn(t) =

∫
RnP(R, t |R0, 0) dR, where n is

a positive integer. The conditional p.d.f. can indeed be expanded as in (4.1) and the
order of series and integral can be interchanged in the definition of Rn due to the
integrability of Rnpk(R) and the uniform convergence of series (4.1) (see e.g. Smirnov
1984). Therefore, all the moments of the extension converge to their stationary value
with the same rate as the p.d.f. of the extension.

To conclude, we believe that the results obtained for the nonlinear dumbbell model
are relevant for the comprehension of polymer dynamics in turbulent flows at any
Weissenberg number. Moreover, we hope that our study may stimulate new experi-
ments directed to investigate the transient relaxation to the stationary regime.
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